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ABSTRACT 

The extensive usage of online learning platforms like Moodle among university students creates a vast source of 
users' behaviour data. Analysing this data with a machine learning model called Deep Knowledge Tracing (DKT) 
and accordingly adjusting the content and style of online materials can be beneficial for both students and 
educators. 

DKT can detect the pattern of learning actions by analysing data from past student actions. The model can find 
the most effective way a student learns- for example by practising more exercises or reading additional literature. 
Since DKT is closely tailored to predict studying behaviour, the model can be incorporated into online educational 
platforms that automatically adjust the content and materials depending on the needs of the user. The benefit is 
that a large group of students with different learning methods can make the most out of an online course due to 
the flexible content generated. 

From a lecturer’s viewpoint, DKT using Recurrent Neural Networks (an algorithm for learning contextualised 
data by repeatedly extracting hidden information) can produce data on where students have certain difficulties 
with a course. By exploring the platform usage, data models can discover the level of user's confusion. The 
analysed data can be used to inform educators on students' difficulties and allow them to provide just-in-time 
support. Having up-to-date information on students' struggles allows lecturers to adjust the content of a course, 
decreasing dropout rates. 

This paper explores the effectiveness of DKT for educational platforms. Consequently, the benefits, drawbacks, 
and the practical applications for all participants in the learning process are presented in the form of research 
evidence. 

 
 

INTRODUCTION 

In recent years, there has been a major shift in the way education 
is performed - the role of high school classrooms and university 
lecture halls has greatly been reduced, as studying transfers to 
online educational platforms. Studies reveal that universities 
worldwide are moving more and more towards online learning, 
where student accessibility and motivation play an integral part 
for successful functioning of the online educational resources 
provided (Dr. Wahab Ali, 2020). With the emergence of a 
global pandemic, all educational institutions, from schools to 
universities, had to transform their patterns of teaching from 
classroom-based to online almost overnight. With the global 
pandemic virtually forcing the integration of online educational 
platforms, many educators have stated that they will incorporate 
aspects of virtual learning in their methods for teaching and 
learning. We have entered a new era of education where online 
and virtual studying is replacing face-to-face teaching and 
learning activities (Gauhar Afshan, Aliya Ahmed, 2020). For 
this reason, it is expected that online educational platforms will 
continue to play a vital role in students' life, so enhancing such 
platforms and making maximum and efficient use of them is 
imperative for better student performance. 

The rapid change towards online education because of the 
COVID-19 pandemic has also had an effect on student 
engagement. Since students have different learning practices 
and strengths, not all of them can benefit equally from online 
educational platforms - studies show that the student drop-out 
rate in online courses was higher than that in face-to-face 
learning (De la Fuente et al., 2021; Delgado, 2021). Those 
results are directly affected by students' engagement, as 
research evidence concludes that students reported less 
exposure to effective teaching when using online educational 

platforms (Dumbford, Miller, 2018). Further studies have found 
that the longer students engage in learning activities, the better 
their academic performance (Bravo-Agapito, 2021; Yokoyama, 
2019). For this reason, it is crucial that educators can predict 
and understand students' engagement with online educational 
platforms. The integration of online educational platforms as a 
leading way of studying is a vital process for students - 
improving those platforms to suit the needs and studying habits 
of students is essential for allowing successful and long-term 
engagement. 

The mass usage of online educational also produces big data 
which can be reviewed. The term ‘big data’ refers to a collection 
of data that is so large in size and complexity that no regular 
management tools can process it efficiently. In the case of 
online educational platforms, big data consists of all the 
students' behaviour when interacting with these platforms. This 
could, for example, be interaction data (e.g., number of clicks 
and time between each click), time taken to complete 
assignments, participation in online forums, or even data on 
students' demographic and their grades. All these various types 
of knowledge of the students participating in online educations 
is contained within the term big data to produce vital 
information about both the learner’s actions and the context in 
which those actions occur. Such big data can be explored 
dynamically as it is produced, to extract precise knowledge on 
the students learning patterns - the knowledge obtained can be 
directly integrated into the online educational platforms to 
support students by presenting content in a more efficient 
manner, closer to the way in which students inherently learn 
faster and most efficiently. 

To utilise the potential of such big data, machine learning 
algorithms can be applied to analyse the data and produce useful 
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results. These algorithms can be viewed as mathematical model 
mapping methods used to learn or uncover underlying patterns 
embedded in the data. In this paper one specific algorithm is 
explored, which is in the field of deep learning- a type of 
machine learning based on artificial neural networks in which 
multiple layers of processing are used to extract progressively 
high-level features from data. This algorithm is deep knowledge 
tracing (DKT) using recurrent neural networks (RNN) as a deep 
learning algorithm to be applied to big data produced from 
educational platforms. DKT may be able to improve students 
learning and potentially help educators gain insights into their 
students' performance is observed 

 
HISTORY OF KNOWLEDGE TRACING(KT) AND 

CURRENT STATE OF DKT 

Knowledge tracing (KT) is an essential task in computer-aided 
systems, which aims at evaluating students' knowledge over 
time based on their learning history (Yunfei Liu et al., 2020). 
The objective of KT is to predict whether students can correctly 
answer questions based on all their previous responses. In KT, 
a machine effectively models the knowledge of a student as they 
interact with studying materials and coursework. KT tries to 
predict students' ability and how capable they are of correctly 
answering any future question by observing all their past 
actions and responses. For example, if a successful student has 
managed to achieve an impressive score on their coursework so 
far, then a good implementation of KT should show a very high 
percentage probability that the student will also perform well 
on their next assignment. The evolution of KT is long and dates 
from 1995, when the first such model was proposed, namely 
Bayesian knowledge tracing (BKT). BKT determines student 
knowledge using a Hidden Markov Model (HMM) to estimate 
a set of parameters for each unique skill contained within the 
data (Christian Fischer et al., 2020). HMM is a model that allow 
us to predict the probability for a sequence of unknown (hidden) 
variables from a set of observed variables. An example of an 
HMM is predicting the weather (hidden variable) based on the 
type of clothes that someone is wearing (observed). HMM is 

 
Table 1. AUC results of BKT on three datasets (Pu et al., 2020) 

integrated into BKT so that the chosen parameters describe 
qualities of the skill being learned, such as how likely students 
are to guess and what the level of their knowledge is. 

Since the model is relatively well established, it has been tested 
with various data sets and most studies find it to achieve good 
accuracy results in the range 60-82% AUC (Pu et al., 2020). 
AUC means Area Under the Curve and it is a measure of the 
accuracy of the tests by calculating the ability of the model to 
distinguish between positive (correct) and negative (incorrect) 
prediction results. The higher the AUC, the better the 
performance of the model. Research tests (Pu et al., 2020) have 
been performed on three data sets to inspect the AUC of BKT. 
The results from table 1 show that the model achieves AUC in 
the range 62-82% (82% AUC with a smaller dataset and a worse 
performance on larger datasets with 62.8% and 74.4% AUC): 

While BKT uses a Hidden Markov Model to infer student 
knowledge, Performance Factor Analysis (PFA) uses logistic 
regression to estimate three parameters for each unique skill 
within the given data (Pavlik et al., 2009). Logistic regression 
is a statistical analysis method to predict a binary outcome, such 
as yes or no, based on prior observations of a data set. A logistic 
regression model predicts a dependent data variable by 
analysing the relationship between one or more existing 
independent variables. For example, a logistic regression could 
be used to predict whether a political candidate will win or lose 
an election or whether a high school student will be admitted to 
a particular college. Compared with BKT, PFA parameters 
provide less information on the initial knowledge of learners of 
a given skill, because the binary nature of the model imposes 
limitations. Moreover, the features used in PFA are relatively 
simple and they cannot provide a deep insight into students’ 
knowledge (Yeung and Yeung, 2018). However, PFA 
parameters provide information on the relative difficulty of 
skills and the relative amount of learning associated with 
correct and incorrect answers. PFA is still in active 
improvement and further research is needed to justify its usage. 

 
Datasets Interactions Students Items Skills BKT(AUC) 

Assistments 943K 1709 4117 102 0.628 

STAT F2011 190K 333 1224 81 0.821 

KDD 2010 4420K 3287 1379 899 0.744 

 
 

The most recent model is DKT, first proposed in 2015. DKT 
uses Recurrent Neural Networks (RNN) to model skill 
knowledge, producing a vector of the probability of knowledge 
level. DKT is complex, flexible, and it can discover inter-skill 
similarities and exercise prerequisites without requiring any 
specific domain knowledge: like knowing if the course is 
Spanish or Mathematics, and whether users are university or 
school students (Sapountzi et al., 2019). It also allows for 
differences in learning ability of the students by conditioning 
on the average accuracy for recent learner's performance. DKT 
is new and still not that well researched, however, it appears to 
be very successful due to its flexibility in capturing statistical 
regularities directly present in the inputs and outputs. Compared 
with the other approaches, DKT is generally more effective at 
predicting student correctness during learning (Khajah, Lindsay 
and Mozer, 2016; Yeung and Yeung, 2018), but it has not been 

 
used extensively in the real world due to limitations around 
interpretability and stability of estimates (Yeung and Yeung, 
2018). Table 2 shows AUC of BKT and DKT on three data sets 
produced from online educational platforms (Khajah, Lindsay 
and Mozer, 2016). 

The results from table 2 show that DKT outperforms BKT on 
every dataset. On the first dataset, DKT has an advantage of 
12% and 14% on the second. The difference in model 
performance on the third data set is smaller (4%), showing that 
the base DKT also has room for improvement. Nevertheless, the 
potential of DKT to outperform all previously used KT 
implementations, often with significant difference, make it a 
very interesting, new model to explore. 
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Table 2. Performance comparison between BKT and DKT using AUC results (Khajah, Lindsay and Mozer, 2016) 
 

 

 
 

DEEP KNOWLEDGE TRACING DEFINITION AND 
HOW IT WORKS 

Knowledge Tracing can be mathematically formalised as 
follows: given a student’s past interactions Xt = (x1, x2, ..., xT) 
up to time t on a particular learning task, it predicts some aspects 
of their next interaction xt+1. In practical scenarios, one such 
aspect is often how successful the student is at answering 
coursework questions based on their previous responses and 
interactions with an online educational platform. To clarify the 
formula, x1 is a vector of data obtained in a specific period of 
time that contains information on the specific question which a 
student has been asked and whether the student has answered it 
correctly. Xt contains all such previous vectors of data based on 
the performance of the student so far. Using all this data, the 
task of Knowledge Tracing is to predict whether a student's next 
interaction xt+1 with a question will be successful or not. In this 
case, we specifically use the word 'task', because KT by itself 
only defines what data is available (all past student responses) 

and what must be predicted (whether the next response will be 
correct), but it does not provide an actual implementation. 

DKT is an implementation for solving the KT task using 
recurrent neural networks (RNN) as its backbone. A RNN 
(Zachary C. Lipton, John Berkowitz, and Charles Elkan. 2015) 
aims to map the given input sequence (x1, x2,...,xT) to an output 
sequence (y1,y2,...,yT), visualized in figure 1. During this 
mapping, the input undergoes a series of transformations via a 
hidden layer, which captures useful information (that is hard to 
process by human-engineers), and forms a sequence of hidden 
states (h1, h2, . . . , hT). This transformation can be stated 
mathematically as follows: 

 
𝒉𝑡	 =	 𝑡𝑎𝑛ℎ(𝑾ℎ𝑥𝒙𝑡	 +	𝑾ℎℎ𝒉𝑡−1	 +	𝒃ℎ) 

𝒚𝑡	 =	 𝜎(𝑾ℎ𝑦𝒉𝑡	 +	𝒃𝑦)	

	

	
Figure 1. A RNN architectural implementation of DKT with input, hidden, and output layer (Yeung and Yeung, 2018) 
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To explain the model in a more practical way, the first step starts 
with an input of previous students' responses (which in the 
above diagram is called input layer). The input of a student's 
previous knowledge was already defined in the KT task 
discussed earlier. Next, this input undergoes various 
transformation steps that effectively learn new bits of 'hidden' 
information each time by extracting new context using complex 
mathematics. Each of the inputs student response x is 
transformed into information bits containing 'hidden' context h 
multiple times. On every mapping the model learns new 
'hidden' information by also reusing the already obtained 
context, as visualized below. Finally, the model produces 
output data which contains all the learned context inside the 
'hidden layer': 

 
 

Figure 2. Visualization of the relation between layers in RNN 
 
 

The hidden layer is what makes the model different and 
advanced; it allows DKT to obtain data on the students' abilities 
and knowledge in a specific context. The model learns from 
previously discovered information inside the hidden layer, 
which contains multiple mappings as in figure 2. The recurrent 
neural networks model used by DKT is very closely related to 
how humans think and process information. It would be much 
easier for someone to predict whether a student will perform 
well in the future, if they were given detailed context, such as 
how confused the student has been feeling lately and whether 
the student spends more time than their peers to achieve similar 
results. The hidden layer presented above explores such context 
and applies it to its final prediction results, making it very 
advanced and accurate. 

DKT can further be extended to use long short-term memory 
(LSTM). Briefly explained, LSTM is a special kind of RNN 
which is capable of learning long-term dependencies by 
remembering past context information for long periods. In 
regular RNN, each mapping inside the hidden layer performs a 
single transformation at once, whereas in LSTM a single 
mapping can be communicating with multiple previous and 
future mappings to extract additional 'hidden' information. 
LSTM is an attempt to imitate the human memory system 
(Christoph Olah, 2015) when extracting context from data, as 
humans often process current information based on recent 
discoveries and thoughts. 

This paper mainly focuses on DKT using Recurrent Neural 
Networks. Where only DKT is mentioned, it is assumed that the 
paper discusses DKT in its RNN implementation. 

 
DKT ADVANTAGES 

In many of the experiments conducted on the accuracy of DKT, 
it demonstrates remarkable performance advantages over its 
competition, mainly BKT. DKT has the capacity to encode 
learning context that is outside the scope of BKT. Knowing the 

specific context of the student's past performance alongside raw 
data, such as numbers, is what allows DKT to discover structure 
and dependencies that BKT misses (Khajah, Lindsay, Mozer, 
2016). 

One area where such DKT context analysis is needed is human 
behaviour, which is strongly driven by recent past events. For 
example, when individuals perform a choice task repeatedly, 
which requires decision making such as answering a quiz 
question, response time can be predicted by looking into the 
context of how fast recent task have been performed (H. 
Ishwaran and L. F. James, 2003). Such recency effects are 
strongly present in student performance since students must 
often perform similar tasks repeatedly. For example, when a 
student is doing a quiz, how fast their previous responses have 
been often determines the response time for the current question 
the student is answering. Recurrent neural networks are very 
effective at discovering and using such human behavioural 
links. Consequently, DKT is well suited to exploiting recent 
performance in making predictions. 

Furthermore, DKT provides benefits when predicting whether 
students can successfully complete coursework exercises which 
require a combination of skills. That is because DKT is fed the 
entire sequence of exercises and their order is preserved. For 
this reason, the model can potentially infer the effect of exercise 
order on learning. DKT also has the capacity to encode inter- 
skill similarity. If each hidden unit represents student 
knowledge level for a particular skill, then the degree of overlap 
can be detected inside the hidden layer of RNN. This feature 
allows skills to be interpreted also in terms of their degree of 
relatedness. For example, knowing that a student is good at both 
math and statistics relates to the probability that the student will 
also be performing well at computer science coursework. 
Similarly, DKT can discover interdependence between 
exercises in the same manner as it discovers interdependence 
between skills. 

Another strong advantage of DKT is its ability to decipher 
individual variation in ability. Since students vary in ability, 
individual variation is vital and can potentially be used in a 
predictive manner. A student’s accuracy in early trials in a 
sequence might predict accuracy in later trials, regardless of the 
skills required to solve exercises. DKT provides extensive 
flexibility in the input features and an ability to identify latent 
categories (Mongkhonvanit, Kanopka, Lang, 2019), allowing it 
to correctly interpret individual variations. 

DKT can further be improved by incorporating Long Short- 
Term Memory (LSTM), defined in the previous section. Table 
3 shows AUC results of BKT and DKT (implementation with 
LSTM) for three datasets. 

Analysing the results, the introduction of LSTM allows DKT to 
greatly outperform BKT. In the first dataset, the difference is an 
impressive 28%, and in the second and third datasets - 17% and 
19% correspondingly. The results show that DKT with LSTM 
can bring significant increase in accuracy. 

DKT can also be extended to use transformers, which integrate 
the ability to learn long-range dependencies (Pu et al., 2020). A 
transformer is an additional model added to the already used 
RNN which weighs the significance of each part of the input 
data. The inclusion of transformers allows the model to learn 
how to differentiate the importance of frequent and rare 
questions on students' knowledge level. Research (Pu et al., 
2020) shows that DKT with transformer can increase overall 
model accuracy compared to BKT. 
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Table 3. AUC results of BKT and DKT with an LSTM implementation 

Datasets Students Exercise Tags Answers BKT(AUC) DKT(AUC) 

Simulated-5 4000 50 200K 0.54 0.82 

Khan Math 47495 69 1435K 0.68 0.85 

Assisstments 15931 124 526K 0.67 0.86 

 
 

Table 4. AUC Results of BKT and DKT with a transformer (Pu et al., 2020) 
 

 
Datasets 

 
Interactions 

 
Students 

 
Items 

 
Skills 

 
BKT(AUC) 

DKT 
Transformers 

(AUC) 

Assistments 943K 1709 4117 102 0.63 0.81 

STAT 
F2011 190K 333 1224 81 0.82 0.95 

KDD 2010 4420K 3287 1379 899 0.74 0.79 

 
 

Table 4 presents prediction accuracy results of BKT and DKT 
with Transformers on three datasets. DKT achieves 18%, 13% 
and 5% better results than BKT. Especially impressive is the 
result of DKT on the second dataset where it manages to obtain 
a result of 0.95 AUC. The ability of DKT with transformers to 
learn long-range dependencies can clearly improve prediction 
results on students' data. 

Overall, DKT has important advantages over previous methods 
because it does not require the explicit encoding of human 
domain knowledge and can capture more complex 
representations of student abilities. Many experiments with the 
model show that it achieves better accuracy than previous 
models such as BKT and PFA. The high accuracy allows the 
model to correctly predict the best sequence of learning items 
to present to students, which could potentially be a very 
powerful tool for improving online educational platforms. 

 
 

DKT DRAWBACKS AND THEIR POTENTIAL 
SOLUTIONS 

Although DKT shows many advantages over previous models, 
there are also some drawbacks that can make the model 
ineffective. In practical scenarios, DKT often suffers from data 
scarcity, since some educational institutions have fewer 
students producing a lower amount of user data (Wu et al., 
2021). The data that it produces are also of a different quality 
because students in different institutions have diverse courses 
and levels of preparation, which results in unbalanced learning 
records. Consequently, it is necessary to evaluate the learning 
data quality before applying it to the model. Sometimes the data 
are not comparable - it is difficult to compare the knowledge 
level of students with different learning processes from 
different educational backgrounds. 

A potential solution to these problems is to use an altered 
framework of the model called Federated DKT (FDKT). In this 
framework, each client takes charge of training a distributed 

 
DKT model (each implementation is independent and separate) 
and evaluating data quality by leveraging its own local data, 
while a centre server is responsible for aggregating models and 
updating the parameters for all the clients (Wu et al., 2021). In 
this definition, the meaning of client is identical to a single 
educational institution using DKT in its own online platform. 
The separate results from different clients(institutions) are then 
combined, hence the name federated. By having this separation 
of clients, data quality is evaluated by incorporating different 
education measurement theories. Another effect of this 
federation of data is that specific local context can be applied to 
the model. Tests on three data sets (Wu et al., 2021) show that 
using Federated DKT outperforms BKT by an average of 20% 
AUC and base DKT by 10%. These experiments on real-world 
datasets demonstrate that FDKT brings additional effectiveness 
to dealing with scarce data of different quality. 

Another major limitation of DKT is that the difficulty of the 
questions which students are asked when using online 
educational platforms is not always correctly taken into 
consideration. Questions requiring the same skill may have 
different difficulties, and thus skill-level prediction cannot 
always accurately reflect the knowledge level of a student for 
specific questions. Although it is quite necessary to solve DKT 
by understanding the difficulty of specific questions, there 
comes a major issue that the interactions between students and 
questions are extremely sparse, meaning that there many gaps 
in the data with missing or not complete information, which can 
lead to failures in prediction accuracy. The sparseness in 
interactions between students and questions is due to that fact 
that a big number of students are answering the same questions 
at the same time, making it difficult to additionally integrate 
question difficulty into the prediction model. 

To overcome the issue of skill-level prediction based on 
questions with specific context and tackle sparsity, the 
underlying information among these questions needs to be 
extracted in an optimal way. This can be achieved by using an 
approach called Pre-training Embeddings via Bipartite Graph 
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(PEBG), which learns a low-dimensional embedding (a map 
with elements determined by a few of their most important 
attributes) for each question with all the useful side information 
(Liu et al., 2020). Embeddings is a method of extracting 
features out of text so that we can input those features into a 
machine learning model to work with text data such as 
questions in online platforms. The term 'pre-training' means that 
we first extract specific features and how closely they relate (for 
example words like 'mom' and 'dad' should be closer together 
than the words 'mom' and 'ketchup'), and then feed this context 
into DKT. A bipartite graph is mathematical way to structure 
this feature 'relatedness' into vertices which represent features 
connected by edges (represent how close features are). To be 
specific, PEBG includes question difficulties together with 
three kinds of relations: explicit question-skill relations, 
implicit question similarity and skill similarity. An example of 
skill similarity could be the words 'creative' and 'imaginative' 
being closely related, explicit questions which contain similar 
key words and are directly related, and implicit ones have 
different context but can still refer to similar skills. These 
relations are chosen to maximize the described embedding 
mechanism. In this way, the learned question embeddings will 
preserve question difficulty information and the relations 
among questions and skills. Experiments with question 
embeddings by PEBG incorporated into DKT performed on 
three real-world datasets show that using embeddings improves 
model accuracy by up to 8% (Liu et al., 2020). 

There exists another similar limitation of DKT related to 
questions which students are asked on online educational 
platforms. All questions nested under a particular skill are 
treated as equivalent observations of a learner’s ability. 
However, this is an inaccurate assumption in real-world 
educational scenarios (Sonkar et al., 2020). One of the key 
assumptions underpinning DKT is that all questions nested 
under a particular skill are equivalent. This assumption, 
however, is generally unrealistic in real-world educational 
datasets. First, a mapping of questions to skills is not always 
available and obtaining such a mapping requires the 
intervention of subject matter experts, which is both costly and 
time-consuming. Second, questions in real-world educational 
datasets are never exactly equivalent, but rather exhibit 
significant variations in difficulty and discrimination 

(Embretson and Reise, 2013). In other words, different 
questions convey differing levels of information about a 
particular learner’s level of the underlying skill, and methods 
for modelling a learner’s acquisition of skills over time should 
take such information into account. 

Simply substituting questions for skills in a traditional DKT 
model is insufficient to accomplish the described goal. To 
achieve understanding of the level of information inside the 
questions on online educational platforms, a modified model 
called question-level knowledge tracing (qDKT) can be used 
(Sonkar et al., 2020). qDKT utilizes a regulariser to incorporate 
question similarity information. Regularisation is a technique 
whereby using mathematics (such as variance in success 
probabilities) in a machine learning model such as DKT is 
adjusted to minimise any false differences inside the produced 
data (called loss function). By doing so, regularisation can 
prevent false assumption in DKT, which can arise due to the 
dataset having too many questions, by simplifying how DKT 
calculates relatedness and similarity between questions. qDKT 
uses a Laplacian matrix (rows and columns of numbers that 
represent similarity) to calculate the relatedness of questions in 
the regularisation with the goal of achieving state-of-the-art 
prediction accuracy results. Unlike base DKT, question-level 
DKT does not assume that each question must be associated 
with exactly one skill. The regulariser used by qDKT assumes 
that success probabilities of multiple questions associated with 
the same skill should not be significantly different for a given 
learner. 

For even better accuracy performance of the model, word 
embeddings for model initialization can be used from 
algorithms like word2vec, fastText and GloVe. These 
algorithms embed words into a high dimensional space (a map 
where the position of an element is determined by many 
attributes) such that words that have close semantic 
relationships will be embedded near one another, while words 
with low semantic similarity will be embedded further apart 
(Goldberg and Levy, 2014). For the case of qDKT, fastText 
embedding can be used, as it considers individual characters in 
a word when computing the final embeddings. By doings this, 
fastText recognises that the words “love”, “loved”, “lovely”, 
and “lovable” are all related and embed them accordingly. 

 
Table 5. AUC Results of qDKT with Laplacian regulariser and fastText word embedding (Sonkar et al., 2020) 

 

 
 

The results from table 5 show that qDKT variations outperform 
DKT on each of the four data sets. For three of the given 
datasets, qDKT with fastText embedding and regularisation 
achieves the best score, and for one of the qDKT embedded 
with fastText achieved the highest AUC. From the given 
experiments, it can be concluded that various implementations 
of question-level DKT with a word embedding and regulariser 
solves some of the issues that DKT has with nested questions 
under skill. Nevertheless, the proposed qDKT model is 
relatively new and further experiments are needed to firmly 
establish its positive effect. 

 
PRACTICAL APPLICATIONS OF DKT 

The high efficiency of DKT can be used in many practical ways 
to improve online educational platforms. Since DKT can 
produce real-time analysis of what a student knows and does 
not know, this can allow online educational platforms to 
dynamically adapt their content and instructions to optimize the 
depth and efficiency of learning. Traditional self-reporting 
methods such as questionnaires or interviews cannot capture the 
temporality of learning processes. Data produced by DKT can 
be used to detect learning tactics best suited to the student using 
the online educational platform. In this way, educational 
websites rely on data-driven methods that can address the needs 
of individual learners and produce content of the highest quality 
for the specific user. The task of designing a concrete study plan 
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for a course is no longer only the responsibility of the lecturers, 
it is rather semi-automated. Online educational systems can use 
provided learning units to independently produce different 
study plans based on the student data obtained by DKT. 

DKT can also provide an early warning system that predicts 
subsequent course performance. Prediction data from the model 
can be utilised to allow online educational platforms to 
automatically estimate student's confusion. Students experience 
confusion when they are confronted with an anomaly, 
contradiction, or an impasse, and are uncertain about how to 
proceed (Yang, Rose and Kraut, 2016). Struggling with 
confusion as a cognitive activity may enable learners to acquire 
a deeper understanding of complex topics. Therefore, DKT is 
very effective at capturing such cognitive process by looking at 
past results from students' choices and performance. Confusion 
is a big problem in online educational platforms because it is 
often directly associated with lower student achievement. 
Confusion might transition into frustration, boredom, and 
ultimate disengagement from the learning process (Larson and 
Richards, 1991). The more confusion students express and the 
more they are exposed to other students’ confusion, the sooner 
they drop out of the course (Yang, Rose and Kraut, 2016). By 
using DKT, data on student confusion can be obtained in real- 
time, allowing for just-in-time support. Such support allows 
students to overcome any struggles they might have when not 
understanding parts of their courses, promoting higher 
retention. The DKT data can be integrated to provide educators 
with exact information on the level of student confusion across 
different courses, giving them a very detailed overview and 
allowing them to focus on specific parts of their courses where 
the student confusion is higher. Prediction analysis from DKT 
enables educators to monitor student progress and to identify 
at-risk students in advance in order to support early 
intervention. 

Another benefit of DKT is that it can help instructors and 
educational designers better understand the impact of different 
learning activities and resources on learners’ engagement, and 
thereby alter curriculum design in the most effective manner. 
Typically, the task of discovering latent structure or concepts in 
data is only performed by human experts, taking a significant 
amount of time and effort. Instead of relying on this strenuous 
human-centric approach to find important correlation in 
students' data from educational platforms, DKT prediction data 
can be used to gain deeper understanding into the most optimal 
way to format course content. 

Overall, the biggest potential impact of the DKT model is in 
choosing the best sequence of learning items to present to a 
student. Since the core purpose of online educational platforms 
is to allow students to learn content presented by a course in an 
efficient and engaging way, integrating a novel model like DKT 
with the huge amount of data produced by students using the 
platforms can have a significant impact on discovering best 
learning practices. Different performance groups among 
students generally classify into one of the following four 
learning tactics: search oriented, content and assessment 
oriented, content oriented, assessment oriented (Fan et al., 
2021). Learning design and learning tactics have clear and 
consistent pedagogical effect on students' performance 
depending on their most suitable learning tactic, so having the 
opportunity to automatically and effectively adjust course 
structure and presentation with DKT's best sequence of learning 

items is a vital innovation in the field of online educational 
platforms. 

DISCUSSION 

Deep Knowledge Tracing is an exciting and innovative field of 
deep learning with diverse applications in the field of online 
educational platforms. It was first developed in 2015. 
Compared to previous models in the field of Knowledge 
Tracing such as Bayesian knowledge tracing and Performance 
factor analysis, DKT relies on state-of-the-art Machine 
Learning approaches such as Recurrent Neural Networks to 
effectively predict student knowledge and skills based on past 
data. This innovative approach can make the model very 
successful because it allows flexibility of input features and an 
ability to identify latent categories in items without explicit 
identification. DKT can infer the effect of exercise order on 
learning, it can detect degree of skill overlap) and it can use a 
student’s average accuracy up to a certain trial to predict the 
next trial. Some experiments show that DKT demonstrated an 
impressive performance advantage over BKT and PFA. 

Nevertheless, DKT can also encounter difficulties among the 
data obtained from educational platforms, possibly hindering 
the effectiveness of the model. Such data is often scarce, of 
varying quality, and it is also difficult to compare knowledge 
data from different institutions. Another potential limitation is 
with topics that share same skills, as they can have different 
difficulties, and nested questions. Some of these limitations can 
be resolved by introducing variation of the original DKT model 
such as Federated DKT, question centric DKT or DKT with 
Pre-training Embeddings via Bipartite Graph. However, all 
these variations are quite new in the field of Knowledge Tracing 
and their long-term effect has not yet been tested extensively. 

One completely novel application of DKT can be integrating 
the model into coursework assessment structure. Since the 
effectiveness of DKT can very accurately obtain the knowledge 
level among all students in a course, this could be a helpful tool 
for educators preparing coursework. Most educators so far have 
mostly focused only on the content of a course to prepare 
assessment exercises, without using any potential data on the 
students' knowledge level in the process. This preparation 
strategy can often lead to ineffective coursework assessment as 
exercises are either too difficult and daunting for most students, 
or below the level of the majority of students, leading to 
unrealistically high grades. By having live feedback data on the 
exact average knowledge level of their students, educators can 
use this data to prepare assignments and exams that are 
challenging, but achievable by the top students in the class. 

Despite some potential flaws, DKT can have a substantial 
impact on improving online educational platforms. The model 
has a lot of potential, as its cutting-edge technology is flexible 
in processing varying datasets of significant capacity, and it also 
has the flexibility to be adjusted when needed. The possible 
effectiveness of DKT brings a lot of practical features to online 
educational platforms - dynamic content improvement, early 
warning system to reduce student dropout rate and personalized 
learning style based on student strengths. Such features are 
beneficial for both students and educators. Although further 
research is needed to reinforce the usage of DKT, results from 
this new and innovative model are very optimistic and reveal 
that its integration into online educational platforms can make 
the future of learning brighter for students and educators. 
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